SolutionBase®

A few "every day" things.

Resistor Colour Code.

Colour	Value
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Grey	8
White	9

Some Multipliers:

Big numbers, little numbers: using exponential notation and their values etc.

A hint to help the forgetful. Both m and M are used below, with M the bigger of the two. So if there is a duplicate, the capital is used for those values above 1.

Prefix	Symbol	Multiplication Factor - Exponential form	Multiplication Factor using lots of 0's.
terra	Т	10 ¹²	1,000,000,000,000.0
giga	G	10 ⁹	1,000,000,000.0
mega	М	10 ⁶	1,000,000.0
kilo	k	10 ³	1,000.0
hecto	h	10 ²	100.0
deca	da	10 ¹	10.0
		10 ⁰	1.0
deci	d	10-1	0.1
centi	С	10-2	0.01
milli	m	10-3	0.001
micro	μ	10 ⁻⁶	0.000001
nano	n	10-9	0.00000001
pico	р	10 ⁻¹²	0.0000000001
femto	f	10 ⁻¹⁵	0.0000000000001
atto	a	10 ⁻¹⁸	0.0000000000000000000000000000000000000

Density of Atmospheric Air.

This can be helpful when working out Air-Conditioning flows and requirements. A general figure is $1.2 \text{ kg} / \text{M}^3$.

Space Loss for Microwaves.

The calculation below determines radiation loss only and assumes the aerial is isotropic^[1], thus the final value (loss) is obtained after including the aerial gain.

Loss (dB) = $32.5 + 20 \times \log_{10} D + 20 \times \log_{10} F$. Where: D is Distance in Km (D > 1) F is Frequency measured in MHz (F > 1)

So the above must be used for calculations of greater than 1 MHz at a Distance grater than 1 Km.

[1] Isotropic - an ideal antenna with unity gain (0dB). Its radiation is uniform in all directions (perfect omni directional).